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FUNCTIONALS FOR FLUX SYNTHESIS
WITH DISCONTINUOUS TRIAL FUNCTIONS

by

P. Lambropoulos and
Vietor Luco

ABSTRACT

It is shown that the functionals originally used in
variational flux synthesis with continuous trial functions
can also be used with discontinuous functions, provided they
are modified so as to yield physically meaningful station-
arity conditions at the discontinuity interfaces. It is fur-
thermore demonstrated that various functionals proposed
in the past for such use are equivalent, without any among
them having any added validity. Some mathematical diffi-
culties that had been attributed to the use of discontinuous
trial functions are clarified and shown to have been the
result of inappropriate calculational methods.

INTRODUCTION

The functionals originally used! to formulate the methods of vari-
ational flux synthesis had the second-order diffusion equation and its ad-
joint as their Euler- Lagrange necessary conditions for stationarity. The
class of admissible or trial functions used was the class of functions that
are continuous in the reactor volume, with sectionally (or piecewise) con-
tinuous first derivatives.

It has often been stated?®? that such functionals will not remain finite
when the class of admissible functions includes sectionally continuous func-
tions. To avoid these divergences, we have deemed it necessary to intro-
duce special functionals? having first-order Euler- Lagrange equations. It
has also been stated®? that the value of this new type of functional is am-
biguously defined when evaluated with discontinuous trial functions.

This report shows that the aforementioned divergences and ambi-
guities do not arise if the trial functions are consistently interpreted as
sectionally continuous functions, with sectionally continuous first deriva-
tives. Then it will be seen that, to obtain physically meaningful stationarity
conditions at the discontinuity interfaces, one needs to modify both the first-
and the second-order functionals. However, the various modified functionals



that will generate the appropriate interface conditions are not u.ni.quely
determined. They are all equivalent without any among them having any

added validity.

The following section is devoted to the derivation and discussion of
the various functionals for discontinuous trial functions. The list of suc%q
functionals presented in this report should be considered as representative
rather than as exhaustive.

The last section takes up some pertinent mathematical problems.
It is shown there that the apparent divergences and ambiguities have been
caused by the use of inappropriate calculational methods and not by the
discontinuous trial functions.

EVALUATION OF THE FUNCTIONALS

The functionals originally used to formulate the method of varia-
tional flux synthesis with continuous trial functions are of the type

b
do* _d
I[e.¢*] = (% Dﬁw‘ cP*/\cp) dx. (1)

a

The type proposed to be used with discontinuous trial functions is

b .

4 ., d 2

Flo,¢*j,i*] = (w*d—i - j* §‘P+ @*Ag - j*D 13) dx. (2)
a

For simplicity, a one-dimensional system extending from x = a to
x = b has been assumed, and all the nondiffusion terms in the group-
diffusion operator have been lumped together into the A operator. For the
same reason, the time dimension has been excluded and zero flux and ad-
joint boundary conditions will be imposed throughout. Any or all of these
limitations could be removed without affecting the argument.

The classes of admissible functions to be used in the evaluation of
the functionals are: for J[@,9*], the class of functions ¢(x) and @*(x) that are
sectionally continuous® with sectionally continuous first derivatives in [a,b],
assuming zero values at x = a and x = lo)), Tieii F[cp,cpj“j,j*], the same class
of functions ¢(x) and @*(x), plus the class of functions j(x) and j*(x) that are
sectionally continuous with sectionally continuous first derivatives in [a,b].

The term "sectionally continuous" is used here in the conventional
sense, and it implies that the function in question is continuous almost

everywhere in [a,b], that is, at all points except for a set of points of



measure zero. For the purposes of this report, such a set will be assumed

to consist of a finite number of points. At the points of discontinuity, the
value of the function is assumed to have finite (but different) limits from
the left and the right. This type of discontinuity will be referred to as jump
discontinuity. (These conditions could be relaxed to admit discontinuous
functions with unbounded limits from either side, provided such functions
were square integrable.)

Again for the sake of simplicity, we will assume that there is only
one point (x = x,) inside [a,b] where the functions ¢, ¢*, dcp/dx, d:p*/dx, 1l

and j* can have a jump discontinuity. At that point x,, the derivatives

do/dx, de*/dx, dj/dx, and dj*/dx do not exist. The functions ¢ and ¢* may
or may not be defined at x = x,.

The functionals J[p,9*] and F[g,¢*j,j*], being the integrals of sec-
tionally continuous functions, are now well defined, finite, and given by®

b
de* _ d
T, p*] :f (%D-d—z+ cp*/\cp)dx
a

X5 b

z do* Jdo ) (dcp* domy )

[ (S5 D2+ omng)axs NG Pt ethe) dx (3)
a

0
b d; dep
Flo,0¥j,j*] = (‘«P*d—i = j*d_x-+ o*Ag - j*D lj> dx
g
%0 :
d ip G e
a

o
* e * _ ak '1-)
W +(<P s = ot k- DGR (4)
X

0

The integral

is a short-hand notation for



b
lim f(x) dx + f(x) dx |,
€=>+0 2 Xot€

where the limit is taken after the integration is performed. It is in this
sense that all integrals over [a,b] should be understood in this report. For
the class of functions considered here, such integrals will always be finite
and independent of whatever value one might assign to the function at x,,
for this is a set of measure zero. Moreover, since the functions in ques-
tion are continuous in each of the intervals [a, %, - €] and [x,+ €, b], one can
integrate by parts and then take the limit for ¢ > +0. Using this procedure
of integration by parts in Eq. 3, one finds that the functional J[cp,cp*] can be

written in two other equivalent forms; i.e.,

Jle.¢*] = ¢*D_¢L - 9¥D o}

B d [ dg
sl = (hpy e
+ ® l:dx(Ddx)+ Acp:ldx, (5)
a
or
2 d (de*
Io.¢*] = ¢*'D_g_ - @f'D g, + [ &(% D) + cp*’\} pdx,  (6)
a
where
liiizar D62 6)) = 1D,
€0
lim D(xo+¢€) = D,
€—>0
lim ¢(xo- €) = o_,
€—>0
Ll elxote) = @,
Seed
lim — = !
E=q OF Xg- € =
and
limﬂ = r,p;_,
€>0 X|x te

Z’i’:czn:ﬂérly for ¢* and its derivatives! Note that if a function has a jump
ntinuity, say at x,, its derivative may approach infinity from the left



a.nd/or the right. One can readily show, however, that this will be an in-
tegrable singularity. Therefore, since, for example, do(x /dx is assumed
to have only jump discontinuities, the integral

b
f cp*iDﬂdx
dx
a

will be finite (provided of course, that D(x) is bounded and differentiable,
which is assumed to be the case).

By means of the same transformation, the functional F can be
written in three other equivalent forms:

b
1 ] de* . ., do : _1.)
ok etk o Al o o S S = * - Tk
Flo,9%,5,i*] = o*j_ - ¥4 +f ( = -1 - rothn - T de s i
a

or
i dj dj*

Flo.gFi.i*] = j*e, - i*e_ + (cp dJ + 4o @ * 9*Ag - D7 )dx, (8)
a

or

b
. : e . dp*.  dg* .
Flo.o¥i,i*] = o*i_ - ofiy - i*o_ + ife, +/ (i - —(%
a
+ Q*AP - j*D"j) dx, , (9)

where, as before j_, j,, j*, and j% indicate limiting values of these functions

at x = x,.

The stationarity conditions for J[@,9*] and F[p,¢¥j,j*] can be ob-
tained from any of their equivalent forms. Using Egs. 1 and 2 results in

dx dx

o

b *
8J :f (dw* ii%+ ot Did%p+ SQ*AP + cp*Aécp) dx, (10a)
a

and

b ; .
d L, de ., ds
§F :f (6cp* - T T ——d:f % ‘p + 8p*Ag + 9*ASe
a

dx dx

_87*DY - *D" ’6)) (10b)



and integrating by parts gives

b *
d d‘P) _i(i“’—D)+ 1| b b dx
5 :f {6:9*[—&(135{" +Aw]+[ v 2 ¢
a

+ 8¢*D_g! - 8¢ID ¢} + ¢ *D_bp_ - 9 Fbq,, (10c)
and
B dj de 1
2 e el e el =1
e o [ rlm) - snfize o)
a
dj* N ) (dtp* A*D_l) o
+<E+‘PA i e 8]
(104)

+@¥ej_ - 9oy - jRep_ + jYbo,.

Since 8¢¥, étp’fr, 6¢_, 8¢, 8j_, and 8j, are independent arbitrary variations,
§J = 0 and 6F = 0 imply the following conditions at x,:

who= CP;» = @t o= (p_‘*_' =0 for J, (11)
and
L= g D Dot (12)
On physical grounds, the desired conditions at x; are
¢+ = 9, ¢f = ¢f
for I, (13)
Digl = D_¢., D g¥' = D_o*
and
2 *
®r = 9, 9% = ¢F
fo RN (14)

PO ¥ -
e = s s

' Clearly,A the functionals J[q;,cp*] and F[cp,cpi"j,j*] will be stationary for
fv'.mctmns @, ¢¥ j, and j* that do not satisfy the appropriate interface condi-
tions at x = x; and are therefore unacceptable.

% To obtain the proper interface condition, we must modify the func-
ionals J and F, by adding terms defined at the interface.



The following modified functionals have their stationary value for
functions ¢, ¥ j, and j* which satisfy conditions 13 or 14 at x = xg:

b
d
Tile.9*] = (9F-9%) o + Bloy - ) +f (d‘f{ - ‘P g cp*Acp) dx, (15)
a
5 d d
Tdo.g*] = alD, g} - D_gt) + Blgy- ) + cp*[g;(n ). Aq»] ax,  (16)
a

% 2o *1 i . d (do* *
3P - \Pp - ¥l T s &
Tilo.o*] = (0 - ¢%) o + (9F'D <pD)B+a T\ D) - e*A | e dx
(17)

Ido,0*,v] = (9% - @X)yDye} + (1-v) Dol ]+ [yel'D, + (1-v) ¢*'D_Noy - o)
® (de 0 4 g 18
+ (dx D— -+ Acp) (18)

b
i . ) dj . d s
File,0%,5,i*] = aley-¢_) + B(y-i-) +f (‘P*d—i - % _der @*Ap - j*D IJ) dx,
a

(19)
Falo,o*,5,i*] = alo; - ¢.) + (¢F-9%) B
L d d
Pl (-9 5 2 e D7) ax, (20)
a
Falp.9*,5,i*] = (7%-3*) o + B(i4-i.)
P dj
: (“’ di+ dx ¢+ ¢*Av- D7 )dx’ (21)
a

Falo.0*.5,%] = (7%-3*) o + (¢} - ¢¥) B

b
L A -'*D"')d 22
+f (dx“"a‘“‘““” R ()

a

Til



1z

and

Folo,g®.i,i%y] = [ye* +(1-y) @f1Gy-32) - [vit+ (1-v) i*)(epy - )

B dj dep 1
o Cles o G -'*D'">d, 2
& (QodXJi+‘<P/\<PJ i) dx (23)
a

where o and B are undetermined multipliers defined at the interface, and
vy is a numerical parameter. Buslik® first proposed functionals Jl[(p cp*]
and Fz[cp o, 3.3 *]. The functionals J,, J3, F), F3, and Fy are of the same
type. Functional Talo,o *,v] is of the type proposed by Pomraning? for the
self-adjoint Sturm- Liouville equation. Fs for Yy = 1/2 coincides with the
functional used by Wachspress and Becker,? and a similar form was
proposed by Pomraning® for time-dependent problems.

We will now show that the stationarity conditions for Jl[cp,cp*],
Tale,0*,v], File,9*,j,i*], and Fslo,¢*,j,j*;y] are the appropriate ones for
the physical problem. The demonstration for J,, J3, F;, F3, and F, would
essentially be the same and will thus not be carried out. The first varia-
tions for J;, J4, F;, and Fg are

. - f b [ 20 52) ] [-&(ﬂgnw]w}dx

9% - ¢¥) da + 6B(py -0 ) + 69*(D_¢! - &) + s¢F (- D o)

+ (¢*'D_-B8) 69 + (B - oF'D,) sy, (24)

s - [ {w (022) »ae] [ (2 0) + 4] o} o

+ (91 - 9*)[yDy 89, + (1-y) D_6¢. ]+ [ysp¥'D, + (1-vy) 69*'D_I(ey - 9_)

- [yeg*+(1-v) 69f](Dyg} - D_g!) - (¢¥'Dy - ¥'Dy)[ybep_ +(1- ) 6g,],
(25)

b
6F, = [écp (—+A ) (i*+ * ) < *(ﬂ ‘1')
ﬁ @ ot O*A) se - 8%+ DY

= (d_cp* T EpE NN j
==t 6j | dx + sapy - ) + 6B(j4-i_)

t (T +a) 69y - (a+j*) 6 + (B - ¢F) 85, + (9* - B) 6j_, (26)



b
dj ) (dj* ) : (dcp -1.)
= *( S Lo BEge R
§F5(y) '[; [ch (dx T A} + | == + oA 8¢ - 8j D)7

=OF S, O o
- (% + j*D ‘) 63] dx + [yog* +(1-v) 8¢F)(G4-3.)

- [ysi*+(1-y) 85%)wy - 9.) + (5% - i*)yoe_ + (1-v) 69,)

- (¥ - o¥)lvej, +(1-y) 6j_]. (27)

The stationarity conditions as usual follow from requiring 6J; = 6J4 =
8F, = 86F5 = 0. In these cases, in the reactor volume, they are

d dcp) -
o) rre 0

and for J; and Jg; (28)

d (de* ) iy
(a2 D) + % = 0

_+A(p:0, w

F for F, and Fs; 2 (29)

+

R
*
=

1
o

and

dtp* o B
E+JD = 1

-

plus the following interface conditions:

P+ = @, 1

oy = 9%,

Dig, = D g = a, r for J,. (30)
and

¢¥'Dy = ¢¥'D_ = p J

13



P+ = P,

of = ¢,

D ¢} = D_o!, rfor dfre (31)
and

¢I'Dy = ¢*'D_

P+ = P- )

I+= 1,

i¥ = i* = o, r for Fy, (32)
and

o; = ¢ =B J
and

P+ = P )

i = s

il 2 rfor Fs. (33)
and

of = of

These are the required differential equations and interface condi-
tions. Consequently, any of the functionals J1, J4, F1, or F5 can be used for
the formulation of a variational flux-synthesis approximation using discon-
tinuous trial functions. The same conclusion applies to Jp, J3, E;, F3, and By

Just as it was shown before for J and F, the functionals J;, J,, J;,
J4 Fy, By, Fy, Fy, and Fg can be written in several equivalent forms.

For brevity, the different equivalent forms will be shown only for Jy,
Jg, Fy, and Fs.

b
i = ¢f(D_¢L-s)+¢1(B_D+¢p;r)+a(¢+-¢_)+/ {tp*l:— d(D:x_‘P)JrAzp]}dx
a

b
= (¢*'D_-0a) g_ + (- 9F'D,) o4+ (- 9%) B +f [- ad(%‘ﬁ: D) & ‘P*"] el (34)
a

&l
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Joly) = [yo¥'Dy + (1-y) 9*'D_Jpy - 9-) - [ye* + (1-v) ¥ )(Dyo} - D_gl)

b
d dcp)
L S
+.£ (p[ dx(Ddx +Aw]dx

= (9f - 9¥)yDyg} + (1-y) D_g.] - (o}

@Dy - *'D_)lyp_ + (1-v) 9]
b
d (do* ) * .
+L [-Ex.(_d?D + o*A | dx;

(35)
Fy = B-9)) it +(e*-B)j. +alpr-9.)
° de* . do D- L
] (- 5E g2 ethe - D7) ax
a
= (j¥+a) oy - (G*+o) o + BG4 -5.)
b
dj .
+[ (Qp &J+¢L+¢,*A¢- *D 1j) ax
a
= (j*+a) 4 - (i*+a) o_ + (B-of) iy + (9*-B) .
+ b(dJ .l '*D‘1'> dx (36)
dx Q= dx J “P Q-] 7 ’ .
a
Fs(y) = -[yix + (1-v) i*)ps-9_) -

(oF - ®)viy + (1-v)j_]

b
Skl Sl e _1.)
=i S et - D dx
+/ ( Fpes il dXHPAcP J J
a

= (- i®)ye. + (1-v) @ ]+ [ye* + (1-v) 3G, -3.)

b
dj , dj* g j* '1'>
o - *D7Y) d
+f (‘P 3 t 3z @+ ¢*Ap - j*D7 ) dx
a

= (- #)ye. + (1-v) 4] - (@F-oD)lvip + (1-v) ]

b
d d
+f (J <P-l3+cp*AcP-J*D J)dx-
a

(37)
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SOME MATHEMATICAL PROBLEMS AND
COMPARISON TO PREVIOUS WORK

In the preceding section, it was stated that integrals of.sectionally
continuous functions over [a,b] are well defined and finite. This statement
is based on a fundamental theorem of the theory of integration. (Se'e .p, 163
of Ref. 7.) But since it seems to contradict Ref. 2 (o 194.), where 1t. is
argued that such integrals diverge, it is perhaps worthwhile to consider

the problem in some detail.

Let f,(x) and f,(x) be two sectionally continuous functions, with sec-
tionally continuous first derivatives, having jump discontinuities at x = x,,
where x, is assumed to be inside [a,b]. In Ref. 2, it is argued that under

these conditions, the integral

b
f £(x)f3(x) dx,

where f'(x) = df(x)/dx, diverges. This is based on the following argument:

The sectionally continuous function f(x), with a jump discontinuity at
%y, is approximated (for |x - xo| < 7, where 1 > 0) by

() = DI D20 oy - ) (38)

Let the right side of Eq. 38 be denoted by fn(x), in order to explicitly ex-
hibit its dependence on the parameter 1. The integral over [a,b] is then

broken up in three integrals over the intervals [a, x,- T], [x, - M, X0+ M] and
[x,+ M, b]. If one uses Eq. 38 to express f;(x) and f,(x) in the interval

Jx - xo} = 1), and then calculates

*ot T af (x) dizq(x)
1i —_
B e -

one finds that this indeed diverges. Thus one seems to be forced to con-
clude that

L dfl(x) dfz(x)
. @ ax o (40)

diverges.

That this conclusion is erroneous, however, can be easily dem-
onstrated by considering the trivial case



where 8(x) is the step function defined by
Bix) =1 for x > 0
(42)

=0 for x <0

The derivative de/dx exists and is well defined and equal to zero for all x,

except x = 0, which is a set of measure zero. It is obvious therefore that
+1 de de
s dx = 0 (43)

and not infinite, as Eq. 39 seems to imply.

The explanation of the discrepancy lies in the fact that, in general,

Xo-T
fify dx £ lim f finfan dx +/
a x

Xot+T) b
f'lnf'z'n dx +f f'lnf'zn dx |.
XotT| (44)

b

L B o-T

What one actually does in approximating the discontinuous function f(x), as
in Eq. 38, is express f(x) as the limit of a sequence of functions fy(x) for
T = +0. The sequence {fn(x)} does indeed converge to f(x) as 1 = +0, but the
convergence is not uniform. That this convergence is not uniform can be
readily seen using the usual (¢,6) reasoning. But without going into that
proof, all one has to observe is that the functions f'n(x) are continuous in the
interval [xq- T, xo+ 7], while f(x) is discontinuous at x, which is contained in
the above interval for all T. And, according to a basic theorem of Real
Analysis (p. 239 of Ref. 7), if a sequence of continuous functions converges
uniformly to some function, then that limit function must be continuous.
Therefore, fn(x) cannot converge uniformly to f(x). Since this convergence
is not uniform, all one can say is that

b b
[1im (f;nf;n )] ax = | £ dx, (45)

hoetY a

but the limit cannot generally be taken after the integration (see, for ex-
ample, Ref. 7, p. 241). It is precisely for this reason that expressions 39
and 40 do not give the same result. Thus the divergence appearing in Ref. 2
is an artifact of the calculation and not a property of sectionally continuous

functions.

147/
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; ; 3,8 ;
iguity that has appeared in the literature™" is

ent amb
i e in an integral of the

the assertion that, if one uses discontinuous functions

form

f(x)g'(x) dx,

then one is led to ambiguous integrals of the form

b
8(x - x0) 8(x - %o) dx,

a

where 8(x) is the step function and §(x) the delta function. Evidently, the
basis for this statement seems to lie in the assumption that if, for example,
one has the integral

b
8(x - xo) 8'(x - xo) dx, (46)

where x, is inside [a,b], then one can replace 8'(x - x,) by the delta function.
Again, that this cannot be the case is easily seen if one recalls that 8'(x - x,)
is zero for all x ,Z %y, and therefore Eq. 46 vanishes; if one introduces the
delta function, the resulting expression is meaningless (see also Eq. 56).

To resolve the difficulty, one should recall the conditions under
which the derivative of a discontinuous function can be interpreted as a
delta function. Let @(x) be a function that is bounded and continuous every-
where in a closed interval [a,b] and is also infinitely differentiable every-
where in [a,b]. Let f(x) be a function that has a jump discontinuity at x,
(which is assumed to be inside [a,b]) and be continuous, differentiable, and
bounded otherwise. Let it be assumed, for simplicity, that both functions
vanish at x = a and x = b. Consider now the integral

b
£(x)e' (x) dx,

and break it up in two integrals over the intervals [a, xo- €] and [x,+ €, b].
Each of the two integrals can then be integrated by parts and the limit for
e > +0 be taken. The result is

b b »
f(X)(p‘(X) dx = -Afcp(xo) = Cp(x)fl(x) dx, (47)




where

of = lim fxo+€) - lim f(xo-¢) = B e (48)

Now, since cp(x) is continuous, differentiable, etc., in [a,b], and in particular
at xy, one can write

b

o(xo) = p(x)6 (x - x0) dx, (49)

and, upon substituting Eq. 49 into Eq. 47, one obtains

b b
flac)otix)ide = - [a£8(x - xo) + £'(x)ep(x)] dx. (50)
: a

Introducing the symbol f'(x), defined by
fr(x) = £'(x) + Af6(x - xq), (51)
one can write Eq. 50 in the form

b b
f(x)g'(x) dx = - £ (x)op(x) dx. (52)
a a

The above derivation is contained in more detail in Ref. 9.

What Eqgs. 51 and 52 imply is that, as far as integration by parts
with a continuous function such as ¢(x) is concerned, the derivative of a
discontinuous function can be interpreted as a generalized function (or
distribution); and the tilde on f' is intended to indicate explicitly that it is
a generalized function. Of course, f' (x) which appears in Eq. 51 is the usual
derivative of the discontinuous function f(x); it exists and is well defined for
all x€[a,b], except for x,. This interpretation of the derivative of a discon-
tinuous function as a generalized function enables one to preserve Eq. 52,
which otherwise is valid only for continuous functions. But only with test
functions @(x) that are continuous, differentiable, etc.* is Eq. 51 valid.

* The delta function can be used in an integral of the form

L7 quibea o,

with glx) being continuous but not differentiable at x = 0, For example, glx) may have a "corner" at x = 0, in which case its derivative is discontinuous at x = 0. In
that case, however, one loses the differentiability properties that such inner products have. This means that Integrals of the form

L2 quten ax

(where B'x) is the derivative of the delta function) are then meaningless. When glx) is infinitely differentiable, such integrals are meaningful with derivatives of 6(x)
of any order.9 But when glx) itself Is discontinuous at x = 0, the integral

L2 qwibbo ax

is meaningless.
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Moreover, even in that case, Eq. 51 is meaningful only w}.wn used in. the
inner product* of Eq. 52 and cannot be given a pointwise interpretation.

That is, if one has an integral of the form

[o(x)f! (x) dx,

where f(x) is discontinuous, one cannot simply rep}aée f'(x) b.Y f'(x). This
is precisely what is implied in Ref. 3, p. 622, and it 1-s for this Ijeason that
the meaningless integral arises. That the pointwise 1nterlpretat10.n of Eqasi
is wrong was illustrated with Eq. 46, which led to a mean?ngiless integral.
The following example shows that it also leads to contradictions.

Consider the integral

4o
9! (x - xg) dx.
Clearly, this is zero because e‘(x—xo) =) foi‘ all x except x,. If, however,
one uses Eq. 51 for the derivative, one finds 8'(x - x,) = 6§(x - x,) and
+o

i) k3 = L

-
which is a contradiction.

Having established that the identification of the derivatives of discon-
tinuous functions with delta functions is meaningful only in the context of in-
tegration by parts with infinitely differentiable test functions, one is tempted
to ask whether discontinuous test functions might be included. For the
answer, one has to go back to Eq. 47. If ¢(x) also had a jump discontinuity
at x5, Eq. 47 would read

b b
fl)o!(x) dx = (- £797) - | qlx)f'(x) dx, (53)

and this is as far as one can go. Thus, Eq. 51 is not applicable in this case.
Instead, one has to work with Eq. 53 without delta functions, and this is what
was done in the second section of this report.

*_Strictly speaking, the defining equation of the derivative of a discontinuous functionl? f(x) is Eq. 52, which
Is often written as <f'(x), (x> = - <f(x), '(X)>. Then, Eq. 51 is just a way of computing f'(x) that the

above equation defines. Similarly the second derivative is defined by <f'(x), ¢(x)> = <f(%), ¢"(x>>,
and so on.



For some purposes, one can assign an arbitrary value to a discon-
tinuous function at the point of discontinuity. For example, in the theory of
Fourier series, it is natural and convenient to assign the value %(f++f-).
One must be aware, however, that this freedom does not exist in Eq. 47. If
one attempts to apply Eq. 47 for the case in which both f(x) and ¢(x) are dis-
continuous at xy, by assigning to ¢(x,) say the value %(:p++:p‘), a contradic-
tion will result. This can be shown by integrating the right side of Eq. 47
by parts once more. The resulting contradiction is

(ot - o= )(f++£7) = (ot +o7)(tt-£-). (54)

This equation obviously is not valid for arbitrary discontinuous functions
f(x) and o(x).

It has been suggested in Ref. 3 (p. 631), and a calculation presumably
supporting the suggestion has been given, that one can "demand" that the
integral

+
B :f 8(x)6(x) dx

be meaningful and furthermore that integration by parts be valid. The asso-
ciated calculation leads to the value 1/2. In that calculation, integration by
parts is performed by using 8'(x) = 6(x). This leads to the relation

4o +o
f 0(x)8(x) dx = 1 -f 8(x)6'(x) dx. (55)

Replacing then 8'(x) by 6(x), one is led to the value B = 12
But one could also observe that the integral

to
8(x)8'(x) dx,

in the right-hand side of Eq. 55 is well defined and equal to zero. Then
Eq. 55 would give B = 1. Moreover, if the pointwise interpretation of the
relation 8'(x) = 6(x) were valid, one could write

+ to
g = 6(x)6(x) dx :f 8(x)6'(x) dx = 0. (56)

The last two values, 1 and 0 for B, contradict the value 1/2 found in Ref. 3
and subsequently used in Ref. 8.
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Thus the same manipulations lead to different values for B depend-

ing on the sequence of the manipulations. First of all, integration by parts

of the integral

+oo
9(x)6 (x) dx,

-

as performed in Ref. 3, would not be allowed even if §(x) were replaced by
a continuous function, because in that case one would lose surface terms
arising from the discontinuity of 8(x) at x = 0 (see Eq. 47). Of course, the
presence of the delta function, complicates matters even more, and integra-
tion by parts simply is not permitted. But the crux of the matter is that no

meaning can be given to the integral

+o
8(x)8(x) dx.

In connection with this problem, the reader is also referred to an erudite
analysis from a somewhat different viewpoint by Bremermann and Durand.’!

The conclusion therefore is that sectionally continuous functions can
be used in functionals of the type given in Eqs. 1 and 2, without giving rise
to divergences. Moreover, the meaningless (or ambiguous) integrals that
have appeared in the literature are due to improper use of the delta function.
As has been shown, the introduction of delta functions is neither appropriate
nor necessary.
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